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Machine Learning-Enabled Tomographic Imaging of
Chemical Short-Range Atomic Ordering

Yue Li,* Timoteo Colnaghi, Yilun Gong,* Huaide Zhang, Yuan Yu, Ye Wei, Bin Gan,
Min Song, Andreas Marek, Markus Rampp, Siyuan Zhang, Zongrui Pei, Matthias Wuttig,
Sheuly Ghosh, Fritz Körmann, Jörg Neugebauer, Zhangwei Wang,* and Baptiste Gault*

In solids, chemical short-range order (CSRO) refers to the self-organization of
atoms of certain species occupying specific crystal sites. CSRO is increasingly
being envisaged as a lever to tailor the mechanical and functional properties
of materials. Yet quantitative relationships between properties and the
morphology, number density, and atomic configurations of CSRO domains
remain elusive. Herein, it is showcased how machine learning-enhanced
atom probe tomography (APT) can mine the near-atomically resolved APT
data and jointly exploit the technique’s high elemental sensitivity to provide a
3D quantitative analysis of CSRO in a CoCrNi medium-entropy alloy. Multiple
CSRO configurations are revealed, with their formation supported by state-of-
the-art Monte-Carlo simulations. Quantitative analysis of these CSROs allows
establishing relationships between processing parameters and physical prop-
erties. The unambiguous characterization of CSRO will help refine strategies
for designing advanced materials by manipulating atomic-scale architectures.

1. Introduction

Over time, strategies were developed to tailor the proper-
ties of materials to societal needs, by manipulating their
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compositions, structures, and imperfec-
tions from the macro- to microscale and
even atomic scale. Alloy making tradi-
tionally involves the introduction of small
quantities of one or more species, solutes,
into a matrix of a solvent element. Dur-
ing processing, one or more (meta)stable
phases form that modify the response to
physical or mechanical stimulation.[1] In
the past decade, so-called high/medium-
entropy alloys (H/MEAs) have been in-
troduced, whereby multiple elements are
mixed in equal, or close to equal quan-
tity. Although initially assumed to be
chemically disordered,[2] i.e., atoms from
these principal elements randomly oc-
cupy sites of the crystalline lattice, re-
cent studies have suggested that atomic-
scale, chemical short-range order (CSRO)
is far more prevalent in H/MEAs than

initially assumed, offering a potential lever to tailor their
properties.[2b,3]

A representative H/MEA is CoCrNi, in which the presence and
nature of CSRO are currently debated.[2b,3b,d–g,4] Transmission
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electron microscopy (TEM)-based approaches are most preva-
lently used to resolve CSRO,[2b,3b,d,g,5] but reports on the pres-
ence and configuration of CSRO have been thus far contradic-
tory, even for samples synthesized in the same conditions (Table
S1; Supplementary Text, Supporting Information). Due to the in-
trinsic limit of two-dimensional projection imaging, it has been
pointed out that the observed electron reflections may originate
from factors other than CSROs, e.g., planar defects and higher-
order Laue zones.[5,6] An alternative, reliable, 3D analytic perspec-
tive of CSRO is hence needed to reconcile these controversies, but
also to facilitate the use of CSRO in the materials design.

Atom probe tomography (APT) has long been expected to
probe CSRO in 3D, but recognizing CSRO has been hindered
by its anisotropic spatial resolution and imperfect detection
efficiency.[7] Overcoming these limitations by manual analysis
has proven impossible.[8] Inspired by other machine learning
(ML) methods developed to process complex microscopy and mi-
croanalysis data,[9] and building on our previous efforts,[7c,10] we
introduce a bottom-up approach to quantify in 3D the CSRO do-
mains in APT data from CoCrNi, termed ML-APT, that does not
require any prior knowledge of the CSRO configurations, in con-
trast with previous work[10] (Supporting Information). The over-
all flowchart is presented in Figure S1 (Supporting Information).
ML-APT enables the identification of CSROs as well as the quan-
tification of the number density of ordered domains, their config-
urations, elemental site occupancy, and size/morphology. Monte-
Carlo simulations are then used to rationalize our analyses, facil-
itating an understanding of ordering reactions. We finally show-
case how to establish a direct processing-CSRO-property relation-
ship, paving the way for further material design opportunities.

2. Results and Discussion

2.1. APT Results

An equiatomic CoCrNi alloy was analyzed in two states, first
following the homogenization, and, second, after the homog-
enization and annealing (Methods and Table S2, Support-
ing Information). We performed correlative scanning electron
microscopy-electron backscattered diffraction (EBSD)-focused
ion beam (FIB)-APT to characterize their microstructure in
grains of selected orientation (Figure 1a), i.e., {002} and {111}.
Figure 1b–e details a typical APT analysis from the annealed sam-
ple. Figure 1b is a detector hit map with a pattern corresponding
to the symmetries of {002} crystallographic planes, and Figure 1c
is the 3D atom map reconstructed around this pole. A close-up
in Figure 1d shows resolved {002} atomic planes. The recon-
struction was calibrated to the reported interplanar spacing of
face-centred-cubic (fcc) CoCrNi.[11] Spatial distribution maps[12]

are calculated along the depth (z-SDMs) to exploit these most
highly resolved signals and to evaluate the CSRO. The z-SDM
indicates the characteristic period of each elemental pair along a
specific direction, which is similar to a split pair correlation func-
tion used in, e.g., TEM.[3c] The z-SDMs of different elemental
pairs obtained in a 2-nm voxel are plotted in Figure 1e. The peak-
to-peak distance for each elemental pair is the same, suggesting
a homogenous solid solution. Typical clustering algorithms in
the APT community[8c,13] have been tested but cannot identify
CSROs (Figure 1f,g and Supporting Information). A similar anal-

ysis along {111} planes is provided in Figure S2 (Supporting In-
formation). The spatial resolution for {022} planes is insufficient
to perform subsequent analyses.

2.2. ML-APT Framework

As detailed in Figure 2a for L12-CSRO, for the random solid solu-
tion of fcc-based CoCrNi alloys, the elemental occupation of each
site is equiprobable. CSRO occurs when particular sites have a
higher probability to be occupied by a specific element, e.g. the
face-centered sites are more likely to be Cr/Ni while the edges are
Co atoms. At higher probability, up to close to 100%, CSRO is es-
tablished and can facilitate the nucleation of long-range chemical
order. The corresponding Co-Co z-SDMs along the <002> from
simulated APT data are shown in Figure 2b, and the peaks close
to ±0.18 nm and ±0.54 nm are disappearing with the evolution
of CSRO. Any type of CSRO can be detected, provided that its
signature in the z-SDMs along a particular orientation is clear.
This allows us to recognize different CSRO configurations with-
out any prior knowledge, which is conceptually unlike the pre-
vious up-bottom strategy with prior possible ordered or CSRO
structures.[7c,10]

The ML-APT workflow to reveal CSRO in H/MEA is as follows.
First, we generated artificial APT data along <002> or <111>
containing either a randomly distributed fcc-matrix or CSRO
(Methods). The weak CSRO was not simulated, as the signal to
background ratio of the peaks at ∆Z values such as ±0.18 nm
and ±0.54 nm is typically too low to confidently identify them
experimentally. The FCC and strong CSRO, were labeled as 0
and 1, respectively. Over 10 000 of corresponding z-SDMs pat-
terns are recorded for each orientation (Table S3, Supporting In-
formation). This synthetic data is fed into an optimized 1D con-
volutional neural network (CNN) to obtain an fcc-matrix/CSRO
binary classification model (Figure 2c; Methods and Figure S3a,
Supporting Information). Note that a random forest algorithm
has been tested but its performance is not better than the applied
1DCNN.[10] ML-APT shows excellent performance for both simu-
lated and experimental test datasets (Methods and Figures S3b–d
and S4, Supporting Information). It is further tested on a set of
physically-informed large-scale CoCrNi artificial APT data with
L12-CSRO domains with a diameter of 0.7–2.0 nm (Methods,
Supporting Information), and ML-APT distinguishes these well
(Figure S5 and Supporting Information). The gradient-weighted
class activation mapping,[7c,14] which uses gradients of any tar-
get concept flowing into the final convolutional layer to produce
a coarse localization map highlighting the important regions in
the image for predicting the concept, reveals that ML-APT per-
forms the classification by focusing on the specific peaks of the
z-SDMs that can be used to accurately classify the fcc/CSRO in
both simulated and experimental data (Figure S6, Supporting In-
formation). Finally, experimental z-SDMs were subjected to pre-
processing and then input into ML-APT to obtain 3D CSRO dis-
tributions (Figure 2d; Methods, Supporting Information).

2.3. 3D Perspective of CSRO

Typical examples of 3D distributions of CSRO domains obtained
from ML-APT, applied to Co–Co, Cr–Cr, and Ni–Ni, are presented
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Figure 1. Typical APT data of the equiatomic CoCrNi alloy after annealing at 1273K for 120 h and conventional data analysis to look for CSRO. a) The
EBSD inverse pole figure highlights the grains used for APT experiments. b) Representative 2D detector hit map. One centric {002} crystallographic pole
is labeled. c) Precise 3D APT reconstruction along the <002> orientation. d) Local close-up of a thin slice in (c) along the <002>. e) z-SDMs of different
elemental pairs in a representative 2-nm voxel in (c). Its signature corresponds to the fcc structure and its unit cell is given. Two kinds of conventional
APT analysis approaches: f) frequency distribution analysis of Co, Cr, and Ni atoms compared to the binomial random distributions, and g) k-nearest
neighbor (KNN) distance analysis (k = 1 and 5) of Co-Co, Cr-Cr, and Ni-Ni elemental pairs. Exp and Ran labels correspond to the results obtained by
experimental and random-labeled datasets, respectively.

in Figures 3 and S7 (Supporting Information) along <002> and
<111>, respectively. Cross-species elemental pairs were not an-
alyzed to avoid possible biases arising from differences in evap-
oration fields affecting the spatial resolution[15] and this same-
species information is enough to analyze the CSRO (Support-
ing Information). Figure 3a shows a typical spatial distribution
of these domains with a near-spherical morphology (Figure S8,
Supporting Information). Its z-SDM and that of the remain-
ing fcc matrix data are plotted in Figure S9 (Supporting In-
formation), matching well with those from simulations as out-
lined in Figure 2b. Figure 3b–d shows size distributions of do-
mains in which the Co–Co, Cr–Cr, and Ni–Ni are classified as or-
dered, respectively. The Pearson’s correlation coefficient (PCC)
and contingency coefficient (μ)[16] are used to test the statisti-
cal significance of the difference between these distributions
and a chemically randomized dataset, with μ found more sen-
sitive than PCC to characterize such subtle differences. We de-
fined a threshold to classify the (non-)randomness at 0.25. The
choice of 0.25 is explained in Methods (Supporting Informa-
tion). The Ni-Ni distribution is non-random, with a μ of 0.32,
especially when the domain has more than 35 atoms (<1 nm)

(Figure 3e), while the distribution of the two other elements is
closer to random (μ<0.25). Figure 3d,e demonstrates that these
CSRO domains with sizes below 35 atoms are primarily statis-
tically and randomly formed. Considering the average diame-
ter of one CSRO is generally ≈1 nm, it is reasonable to con-
clude that domains with fewer than 35 atoms are mostly disor-
dered. Figure 3f is an example of the Ni–Ni CSRO domain, and
the corresponding Ni–Ni z-SDM is plotted in Figure 3g, show-
casing an interplanar spacing of Ni atoms is twice as large as
that in the fcc-matrix (Figure 1e) (those of Cr–Cr and Ni–Ni still
keep 0.18 nm as shown in Figure S10, Supporting Information),
which matches the L12/DO22-type structure with the Ni–Ni re-
pulsion on {100} as explained in Figure 4a. Although other crys-
tal structures may also match this repulsion scenario, we use the
most often experimentally observed L12/DO22-type structures.[5b]

For comparisons, along the <111>, the three kinds of CSROs
are all different from the random state with μ ≥ 0.25 (Figure
S7b–d, Supporting Information). This suggests that there is ei-
ther Co/Cr/Ni repulsion on {111}, which matches the L11-type
structure, as detailed in Figure S7e (Supporting Information) and
Figure 4b.
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Figure 2. Proposed ML-APT framework to recognize multi-type CSROs in CoCrNi alloys. a) Unit cells of random-fcc, weak, and strong L12-CSRO.
b) Typical Co-Co z-SDMs along the <002> with the evolution of CSRO after performing APT simulation. c) Schematic diagram of the optimised 1D CNN
structure to obtain a random-fcc/CSRO recognition model. d) Flowchart of processing experimental data to obtain 3D CSRO distribution.

Figure 4c,d provides values of μ for the two studied material
states and orientations. Along {002} planes, the value of μ of
Co–Co or Cr–Cr CSROs remains below 0.25. Non-statistical Ni–
Ni CSRO rises from 0.18 to 0.27 after annealing at 1273K for
120 h, with a number density of 4.81 × 1025 m−3 of CSRO do-
mains with atomic configurations matching the L12/DO22 struc-
tures with the Ni-Ni repulsion on {100} (Figure 4a,e). Note that
the probability for the L10 structure is much lower compared to
that for the L12/DO22 considering only one elemental pair has
an obvious repulsive tendency. Along {111} planes, after the ho-
mogenization, values of μ for Co–Co and Ni-Ni CSRO are close
to or above 0.25, suggesting the existence of L11-domains with
the Co/Ni repulsion on the {111}, with a number density in the
range of 2.98–3.18 × 1025 m−3 (Figure 4b,e). After the annealing,
the values of μ of Co–Co, Cr–Cr, and Ni–Ni pairs are above 0.25,
matching with the L11-type structure with Co–Co/Cr–Cr/Ni–Ni

repulsions on the {111}, with a number density of 4.73 × 1025

m−3, 4.66 × 1025 m−3, and 4.73 × 1025 m−3, as determined from
Co–Co, Cr–Cr, and Ni–Ni pairs, respectively (Figure 4b,e). Only
L11-domains exist after the homogenization, and their number
density increases after the annealing, during which a high density
of L12/DO22-domains appears (Figure 4e,f). Overall, the number
density of CSRO domains is approximately three times after the
annealing compared to that after the homogenization. It should
be pointed out that {111} plane has four rotational variants, i.e.,
{111} (i.e., (1̄11), (111), (11̄1), or (111̄)), and Figure 4e is the anal-
ysis of the given population of CSRO-domains along only one
variant that can be imaged in that particular APT dataset with suf-
ficient resolution to perform the analysis. An additional dataset
obtained along another {111} variant leads to comparable results
(Figure S20 and Supporting Information). One can estimate the
overall number densities by extrapolating the obtained number

Adv. Mater. 2024, 36, 2407564 2407564 (4 of 9) © 2024 The Author(s). Advanced Materials published by Wiley-VCH GmbH
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Figure 3. 3D quantitative analysis of CSRO along <002> in the annealed CoCrNi alloy. a) 3D distribution of Ni-Ni CSROs with the mapping of elements.
The front and top views of typical clusters are provided. Different colors mark different CSRO domains. b–d) Size distributions of the identified Co–
Co, Cr–Cr, and Ni–Ni CSROs, respectively. The results from the chemically randomized dataset (Methods, Supporting Information) are compared with
Pearson’s correlation coefficient (PCC) and Pearson contingency coefficient (μ). This CSRO size refers to the APT-counted atoms and the size of 55
atoms ideally corresponds to a 1-nm cube. An upper tail occurring at 155 atoms appears, because we have added all those containing over 155 atoms
into this particular bin. e) Local enlargement of the colored region in (d) which is different from the random curve. f) 3D atom map of a typical Ni-Ni
CSRO domain extracted from (e). g) Its corresponding Ni-Ni z-SDM (Cr–Cr and Co–Co z-SDMs are provided in Figure S10, Supporting Information).

density on one {111} plane and multiplying it by four, enabling a
more accurate quantitative relationship between CSRO and asso-
ciated properties. For example, there are more than 36 additional
CSRO domains within a 103-nm3 volume after the annealing as
compared to that after the homogenization, which will influence
materials’ properties, including for instance the electrical resis-
tivity as discussed below. During the entire process, the CSROs
almost keep the spherical shape (Figure S8, Supporting Informa-
tion) with the size of 20–155 APT-counted atoms (0.7–1.5 nm
in diameter) (Figure 3 and Figure S7, Supporting Information).
Note that these observed domains along {002} and {111} are not
the same ones. A comparison of the compositions between CSRO
domains and raw data suggests that there is no obvious statisti-
cal difference between them, indicating that only the ordering
changed and not the composition (A quantitative explanation is
provided in Supporting Information). Moreover, we compared
the results from laser and voltage pulsing modes (Supporting In-

formation), as shown in Figure S11 (Supporting Information),
which show comparable results, which can be rationalized based
on previous reports of the moderate changes in the depth reso-
lution between voltage and laser pulsing modes.[17] Analysis of
the combined elemental pairs for each individual domain is not
recommended due to the nature of the CSRO, which reflects the
local elemental fluctuation at a very early stage of thermally acti-
vated ordering.

2.4. Electrical Response

The occurrence of CSRO in solid solutions is often associated
with the modifications of physical properties.[8a,b,18] The influ-
ence of CSRO on the mechanical properties of CoCrNi has
been studied widely,[2b,3d,5a,11a] with inconsistent conclusions, but
functional properties have only rarely been investigated. Here,

Adv. Mater. 2024, 36, 2407564 2407564 (5 of 9) © 2024 The Author(s). Advanced Materials published by Wiley-VCH GmbH
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Figure 4. 3D atomic-level details of multi-type CSROs in CoCrNi alloys under different heat treatments and arising electrical resistivity change. a) The
L12/DO22-CSRO structure with the Ni–Ni repulsion on {100}. b) The L11-CSRO structure with the A-A or B-B repulsion on {111}. Element A or B
refers to sites that are enriched in Co, Cr, or Ni but cannot be the same simultaneously (an intuitive explanation is given in Figure S7e, Supporting
Information). c,d) Changes of Pearson contingency coefficient (μ) under different heat treatments along <002> and <111>, respectively. The colored
regions highlight the changes of μ after the annealing. Three APT datasets were analyzed to obtain the statistical results for each data point. A value of μ

= 0.25 is regarded as the threshold between CSRO and random states. e) Number-density change (×1025 m−3) of different types of CSROs under heat
treatment. f) Derived CSRO structural evolution from homogenization to annealing. The corresponding CSRO configurations are plotted in (a) and (b).
g) Evolutions of electrical resistivity under different heat treatments.

we measured the electrical resistivity of the two material states
(Methods). The annealing-induced multiple CSROs in CoCrNi
alloys resulted in a 17% rise in the room-temperature electrical
resistivity (Figure 4g), higher than previous reports (+4.8%) in
ref.[5a] which can be explained by the formation of a higher den-
sity of CSRO domains during the furnace cooling compared to
a quench. This reveals a high sensitivity of the electrical resis-
tivity upon changes in the CSRO state, maybe more so than the
mechanical response. This remarkable increase in resistivity im-
plies that the increasing CSRO might lead to a reduced electronic
density of states at the Fermi level, consistent with the previous
density functional theory calculations in the CoCrNi system.[19]

2.5. Monte-Carlo Simulation

ML accelerated ab initio Monte-Carlo (MC) simulations (Meth-
ods, Supporting Information) were performed to predict the

temperature-dependent equilibrium CSROs and associated crys-
talline structures.[20] Calculated temperature-dependent heat ca-
pacities reveal two peaks due to first-order phase transformations
(Figure S12, Supporting Information). One occurs at around
900K, which is confirmed by differential scanning calorimetry
(DSC), and the second occurs at around 225K which is below
the detection limit of DSC due to sluggish diffusion kinetics at
low temperatures. Predicted first NN Warren-Cowley parameters
(Methods) suggested repulsion of Cr–Cr, Co–Ni, Co–Co and at-
tractions of Ni–Ni, Cr–Ni, Co–Cr above the phase transformation
peak, as shown in Figure S13 (Supporting Information). To iden-
tify the possibly locally appearing crystalline ordered clusters in
the CSROs regime, Figure 5a,b visualize the calculated CSRO
diffuse intensity map (𝛼q) (Methods, Supporting Information) in
the (001) and (111) planes, respectively, at 1000K. For the (001),
a (1, 0.5, 0) special point is revealed for Cr–Cr, suggesting, e.g., a
DO22 ordering.[21] Besides, a (001) peak is also presented for the
Ni–Ni and Co–Co pairs: local clusters of L12 or L10 ordering are

Adv. Mater. 2024, 36, 2407564 2407564 (6 of 9) © 2024 The Author(s). Advanced Materials published by Wiley-VCH GmbH
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Figure 5. CSROs predicted by Monte-Carlo simulations. a,b) Predicted CSRO diffuse intensity map, 𝜶q, of Co–Co, Cr–Cr, and Ni–Ni pairs at 1000K in
(001) and (111) planes, respectively. The reciprocal space vectors are given in units of 2𝜋/a, where a is the lattice parameter.

suggested for these two. The intensity of L12 or L10 consistent
CSRO peak is strongly enhanced by magnetic effects (Supporting
Information). Further peak analysis in the 3D reciprocal space
found (0.5, 0.5, 0.5) maxima for Cr–Cr and Ni–Ni pairs, which
are also revealed by projecting the calculated 𝛼q in the (111) as
shown in Figure 5b, which would be consistent with local L11
configurations (i.e., ordering along <111>). Compared with APT
measurements (Figure 4), ordering along <002> for Ni–Ni, as
well as ordering along <111> for Cr–Cr and Ni–Ni are confirmed
by MC simulations. For Co–Co pairs, the correlations related to
L11 are less pronounced (Figure S17, Supporting Information).
Previous studies predominantly suggested the presence of L11
and/or L12- CSRO with Cr-Cr repulsion. Here, we conducted fur-
ther investigations by studying an additional CoCrNi sample that
was annealed at 1273K for 120 h followed by quenching, allow-
ing for comparison with previous furnace cooling condition to
address this discrepancy (Supporting Information).

Although the ML-APT enables tomographic imaging of CSRO
in CoCrNi alloys, there are some inherent limitations at the cur-
rent status, as for all experimental techniques. First, high-quality
APT experimental data is needed (see Supporting Information
for how to determine the quality), to maximize the spatial reso-
lutions, to enable more accurate recognition of CSRO patterns.
Enhancing data quality, and maybe even breaking the limitation
for analysis of only specific sets of planes, could arise from better
modeling atom probe tomography[22] to optimize data acquisi-

tion parameters and enable the analysis of the cross-species el-
emental pairs, even if the compositional complexity of the ma-
terial will impose limits in the achievable precision.[7b] More-
over, voxelization (here 1 × 1 × 1 nm3) lowers the accuracy and
may preclude the identification of small CSRO domains. With
higher data quality, the ML-APT could be used with smaller vox-
els. Finally, there could be ways to directly apply other 3D-based
ML techniques to detect CSRO after enhancing the APT data
quality.[23]

3. Conclusion

To conclude, the proposed ML-APT approach enables us to set-
tle previous debates on CSRO in CoCrNi alloys, and evidence
atomic-scale details of CSRO beyond the state-of-the-art. It si-
multaneously resolves CSRO at both the individual-domain and
overall (statistical) levels. In comparison to other approaches
for CSRO characterization, our proposed ML-APT analysis only
relies on the measured APT mass spectra and is hence inde-
pendent of interatomic potentials needed to interpret CSRO
from X-ray/neutron techniques.[4] Moreover, ML-APT provides
3D elemental-specific information and is hence capable of iden-
tifying multiple types of CSRO (Figures 3 and 4). The observed
CSRO configurations were rationalized herein by Monte-Carlo
simulations. The electrical response could be a better indicator
of CSROs than mechanical properties. The individual influence

Adv. Mater. 2024, 36, 2407564 2407564 (7 of 9) © 2024 The Author(s). Advanced Materials published by Wiley-VCH GmbH
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of CSRO on the mechanical properties is seemly limited at room
temperature, whereas, the co-existing CSRO and medium-range
order could be a better approach to designing new H/MEAs with
better (cryogenic) mechanical properties via adjusting the pro-
cessing parameters (e.g., thermal history[24] and deformation)[25]

or microalloying (e.g., adding Ti or Al).[26] Our method can be
generally used for other H/MEAs as well as for complex engi-
neering materials.
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